

North Sea Electronics

Features

- Highly versatile processor board for downhole or other demanding applications
- 2 x Analog differential inputs with programmable gain
- CANBus communication interface
- 1 x Open Drain output
- 2Mbit HT FRAM memory (default)
- 64Mbit HT Flash memory (option)
- 3 axis accelerometer
- 18-48Vdc Input voltage range
- CNC Machined aluminum housing

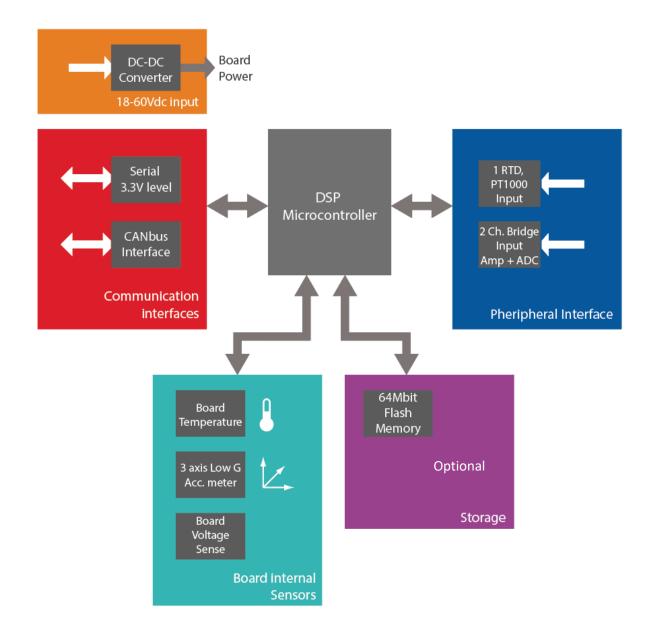
Product Description

The DL100 Data Logger is a tiny, high temperature processor and logging board. Despite its small size, it features two analog bridge sensor interfaces, RTD interface, on-board accelerometer and flash memory for data logging.

Due to its small size, rugged construction and wide input voltage range, the DL100 can be set up to monitor and control a wide range of application. DL100 is optimized for low power consumption. NSE can provide the data logger with customer specified firmware and can assist if the customer want to create its own tool specific firmware.

Revision History

REV	DATE	DESCRIPTION	PREP	APPR
A	21.08.2019	Initial Revision	RFY	GLK
В	05.11.2019	Connectors changed, mechanical drawings	EEN	RFY
С	02.06.2020	Correction of errors, mechanical dimensions in table	AJA	RFY
D	26.01.2022	2Mbit FRAM as default memory. New product picture.	AJA	GLK


1 Board Overview

The NSE HT DL100 Processor Board features a DSP Microcontroller paired with an accurate high temperature oscillator. This is a proven solution from NSE and has been tested and verified in several designs that are in operation worldwide.

All peripherals are connected to the controller through dedicated IO pins, communication buses or SPI.

The combination of a proven design layout, good support, extensive documentation and base driver firmware for all IO functions allow for rapid development of applications and algorithms.

1.1 Board block diagram

Product no: NSE-5003-04

Doc. no: NSE-500304-001

Rev D - 26.01.2022

2 Board Specifications

	Min	Тур	Max	Unit
Physical size				
Length PCB Width PCB Length chassis Width chassis Height chassis		74 20 98 23 12.10		mm (excluding connectors) mm mm mm mm
Environmental Operating Temperature Storage Temperature	0 -40		177 60	°C °C
Power Voltage supply Supply Input Current	18 < 1		48	Vdc mA (depending on application and fw)
Integrated sensors				
Onboard temperature sensor range Temperature sensor error	0		190 ±3	℃ ℃
Input voltage measurement range Input voltage measurement error	15		70 ± 3	Volt %
Input Current measurement range Input Current measurement error	0		60 ± 5	mA – excluding solenoid output % of full scale output
On board logic voltage Logic voltage measurement error		3.3	± 3	Volt %
Bridge excitation voltage Bridge voltage measurement error		2.5	± 3	Volt %
Accelerometer axis Accelerometer range Accelerometer measurement error Accelerometer temperature range	-2 0	3	2 150	X, Y, Z (optional) G (optional) To be determined ℃
Onboard Memory FRAM (Default) Flash (Option)		2 64		Mbit Mbit
Analog input				
RTD channels RTD Temperature range	0	1	360	2-Wire PT1000 ℃
Wheatstone bridge input channels Bridge input gain Bridge resistance	1 100	2	128	Differential input Ohms
Bridge excitation voltage ADC resolution Sampling rate	100	2.5	24 7	Volts Bits Samples per sec

Product no: NSE-5003-04

Doc. no: NSE-500304-001

Rev D – 26.01.2022

Solenoid Output		
Channels Solenoid Output voltage Current rating Current measurement error	1 Board Input Voltage 0.5 ± 5	A % of full scale output
Communication		
CAN bus channels CAN bus default baud rate	1 250	kbps
Connectors H1 H2	891-008-9PA2-BRT 891-008-15PA2-BRT	COM / Power (9 pin) Analog Input (15 pin)

2.1 Thermal properties

The NSE High Temperature DL100 is designed to operate in a 177°C environment.

In a typical assembly, the **NSE UNIT** is mounted to a **MOUNTING PROFILE** that is located inside an **OUTER HOUSING**.

The **OUTER HOUSING** surface temperature should not rise above the specified maximum ambient temperature, and the mechanical design and interface between the **OUTER HOUSING, MOUNTING PROFILE** and the **NSE UNIT** should be such that the thermal resistance specification is achieved.

Datasheet

2.2 Connectors

Product no: NSE-5003-04

2.2.1 H1 communication and power

DL100 Connector:	891-008-9PA2-BRT
Mating connector:	891-002-9SA2-0B7-12J-MC273

Pin	Signal	Description / Function
	name	
1	+VIN	Supply voltage input – diode connected with +BATT. High-side supply to Open Drain
2	+VIN	Supply voltage input – diode connected with +BATT. High-side supply to Open Drain
3	GND	Ground
4	GND	Ground
5	GND	Ground
6	CANH	CAN High - CAN bus
7	CANL	CAN Low - CAN bus
8	Open Drain	Open Drain Output – Current Sink
9	+VBATT	Supply voltage input – diode connected with +VIN

2.2.2 H1 Pin assignment

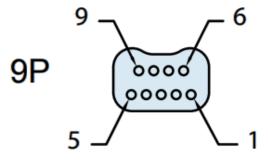


Illustration show face view of connector on the DL100 board (Looking in to the connector). Datasheet

Product no: NSE-5003-04

Doc. no: NSE-500304-001

Rev D – 26.01.2022

2.3H2 - Analog inputDL100 Connector:891-008-15PA2-BRTMating connector:891-002-15SA2-0B7-12J-MC273

Pin Number	Signal name	Description
1	RES	RESERVED PIN – DO NOT CONNECT
2	GPIO2	GPIO Ch2 – 2.5V - V _{LO} <0.5V, V _{HI} >1.75V
3	GPIO3	GPIO Ch3 – 2.5V - VLo<0.5V, Vн>1.75V
4	GND	GROUND
5	GND	GROUND
6	+2.5V	Bridge Excitation Voltage – 2.5V
7	Bridge2+	Differential Input Channel 2+
8	Bridge2-	Differential Input Channel 2-
9	GND	GROUND
10	+2.5V	Bridge Excitation Voltage – 2.5V
11	Bridge2+	Differential Input Channel 2+
12	Bridge2-	Differential Input Channel 2-
13	GND	GROUND
14	RTD1+	RTD channel 1+
15	RTD1-	RTD channel 1-

2.3.1 H2 Pin assignment

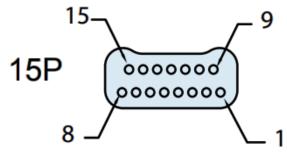
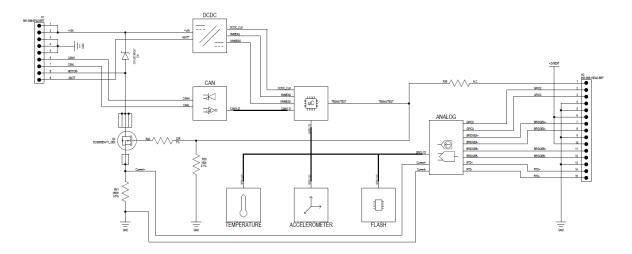
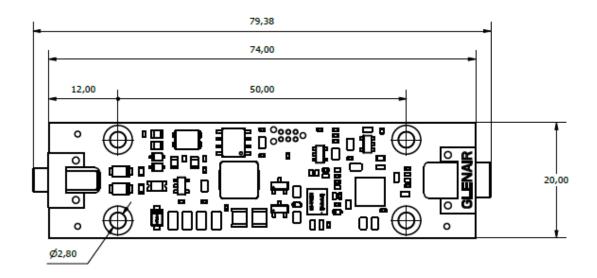
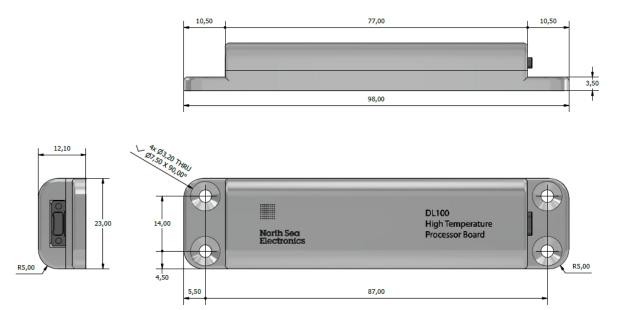



Illustration show face view of connector on the DL100 board (Looking in to the connector). Product no: NSE-5003-04

Doc. no: NSE-500304-001


3 Block diagram


4 Mechanical Dimensions

4.1 Bare Board

4.2 With Chassis

Consult NSE for 3D step model of chassis.