

North Sea Electronics

Features

- Highly versatile processor board for downhole or other demanding applications
- 2 x Analog differential inputs with programmable gain
- CAN and RS485 interface
- 2 x Open Drain outputs
- 2Mbit HT FRAM
- 64Mbit HT Flash Memory (Optional)
- 3 axis accelerometer
- 18-32Vdc Input voltage range
- CNC Machined aluminum housing

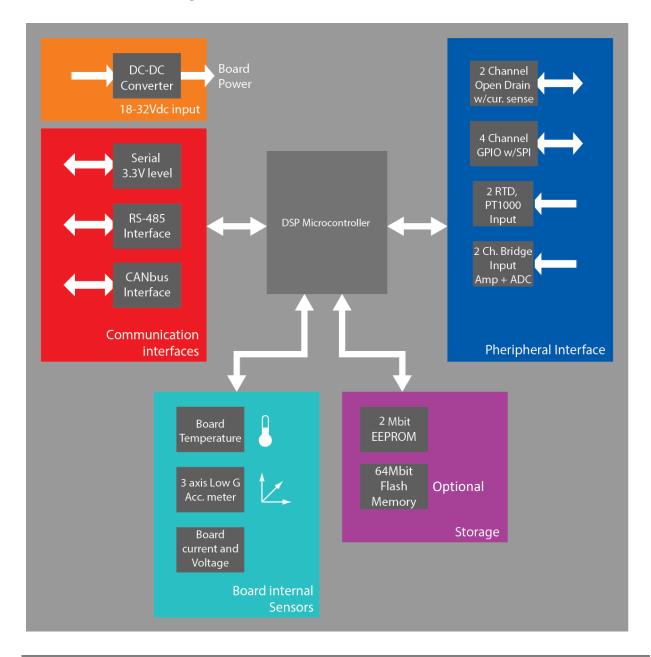
Product Description

The NSE HT PB300 is a highly flexible, high temperature processor board. It is targeted at downhole wireline and drilling tools or other industrial applications where high temperature and severe shock and vibration may occur.

The NSE HT PB300 enables the user rapidly to progress the development of "smart tools" and cut cost by allowing the user to focus on algorithms and tool design. The board features the most common input and output (I/O) requirements and interfaces, such as analog bridge inputs (x2), open drain outputs (x2) for solenoid or relay switching, communication (CANbus and RS485) and several I/O pins. In addition, it has an onboard temperature sensor, accelerometer and a flash memory that gives the board a high level of flexibility.

The user can choose to develop its own firmware for the controller, or he can take advantage the extensive in-house experience in firmware development at NSE. If a customer chooses to write its own algorithms/firmware, NSE will provide drivers for all of the board's hardware.

The NSE HT PB300 PCB layout is made with ruggedness in mind. A CNC machined aluminum chassis provides maximum mechanical support to allow the board to operate in a very high shock and vibration environment. The board uses high temperature specified, military type "micro D" connectors.


Rev C – 24.02.2021

1 Board Overview

The NSE HT PB300 Processor Board features a DSP Microcontroller paired with an accurate high temperature oscillator. This is a proven solution from NSE and has been tested and verified in several designs that are in operation worldwide.

All peripherals are connected to the controller through dedicated IO pins, communication buses or SPI.

The combination of a proven design layout, good support, extensive documentation, and base driver firmware for all IO functions allow for rapid development of applications and algorithms.

1.1 Board block diagram

Product no: NSE-5003-03

Doc. no: NSE-500303-001

Rev C - 24.02.2021

2 Board Specifications

	Min	Тур	Max	Unit
Physical size	MIII	Тур	Мал	
Length PCB Width PCB Length chassis Width chassis Height chassis		167 34 200 37 14		mm (including connectors) mm mm mm mm
Environmental Operating Temperature Storage Temperature	0 -40		177 60	Deg C Deg C
Power Voltage supply Supply Input Current	18	28 20	32	Vdc mA@28V
Integrated sensors				
Onboard temperature sensor range Temperature sensor error	0		190 ±3	Deg C Deg C
Input voltage measurement range Input voltage measurement error	15		36 ± 3	Volt %
Input Current measurement range Input Current measurement error	0		50 ± 5	mA – excluding solenoid output % of full scale output
On board logic voltage Logic voltage measurement error		3.3	± 3	Volt %
Bridge excitation voltage Bridge voltage measurement error		2.5	± 3	Volt %
Accelerometer axis Accelerometer range Accelerometer measurement error Accelerometer temperature range	-2 0	3	2 150	X,Y,Z (optional) g (optional) To be determined degC
Onboard Memory Flash (Optional) EEPROM		64 2		Mbit Mbit
Analog input				
RTD channels RTD Temperature range	0	2	360	2-Wire PT1000 Deg C
Wheatstone bridge input channels Bridge input gain Bridge resistance	1 100	2	128	Differential input Ohms
Bridge excitation voltage ADC resolution Sampling rate	100	2.5	24 7	Volts Bits Samples per sec

Product no: NSE-5003-03

Doc. no: NSE-500303-001

Rev C – 24.02.2021

GPIO (TTL)		
GPIO pins Onboard pull-up resistor value High voltage level input Low voltage level input SPI bus pins SPI bus speed	4 100k 2.6 0.7 3 250	3.3V Logic ohm Volt Volt 3.3V Logic kb/s clock frequency
Solenoid Output		
Channels Solenoid Output voltage Current rating Current measurement error	2 Board Input Voltage 0.5 ± 5	A % of full scale output
Communication		
CAN bus channels CAN bus default baud rate RS485 channels Serial TTL channels	1 250 1 1	kbps
Connectors H2 H1	M83513/13-B type M83513/10-E type	COM / Power (15-socket R/A) Peripherals (31-pin R/A)

2.1 Thermal properties

The NSE High Temperature PB300 is designed to operate in a 177°C environment.

In a typical assembly, the **NSE UNIT** is mounted to a **MOUNTING PROFILE** that is located inside an **OUTER HOUSING**.

The **OUTER HOUSING** surface temperature should not rise above the specified maximum ambient temperature, and the mechanical design and interface between the **OUTER HOUSING, MOUNTING PROFILE** and the **NSE UNIT** should be such that the thermal resistance specification is achieved.

2.2 Connectors

Product no: NSE-5003-03

2.2.1 H2 communication and power

PB300 Connector:	Micro D - M83513/13-B type High Temperature - 15 pin connector.
Mating connector:	T.B.D

Pin	Signal	Description / Function
	name	
1	+VIN	Supply voltage input
2	+VIN	Supply voltage input
3	GND	Ground
4	GND	Ground
5	GND	Ground
6	GND	Ground
7	TTL_TX	Serial TTL TX
8	TTL_RX	Serial TTL RX
9	GND	Ground
10	CANH	CAN High - CAN bus
11	CANL	CAN Low - CAN bus
12	CAN Shield	GROUND through 1206 0Ω resistor
13	RS485A	RS485A
14	RS485B	RS485B
15	RS485 Shield	GROUND through 1206 0Ω resistor

2.3 H1 - Peripherals

Connector H1 will be a M83513/10-E type 31-pin pin contacts right angle connector. Signals on connector H1 are grouped on the connector for improved noise behavior.

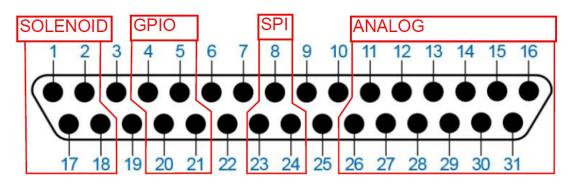
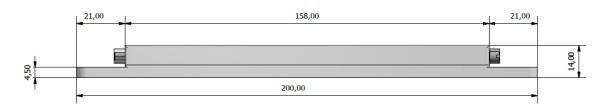


Figure 1 - Connector H2 signal placement


Pin Number	Signal name	Description
1	Solenoid 1+	Solenoid 1 Supply
2	Solenoid 1-	Solenoid 1 Return
3	GND	GROUND
4	GPIO1	General Purpose I/O CH1
5	GPIO2	General Purpose I/O CH2
6	GND	GROUND
7	GND	GROUND
8	SCK	Optional SPI clock
9	GND	GROUND
10	GND	GROUND
11	GND	GROUND
12	GND	GROUND
13	RTD1+	RTD channel 1+
14	RTD1-	RTD channel 1-
15	RTD2+	RTD channel 2+
16	RTD2-	RTD channel 2-
17	Solenoid 2+	Solenoid 2 Supply
18	Solenoid 2-	Solenoid 2 Return
19	GND	GROUND
20	GPIO3	General Purpose I/O CH3
21	GPIO4	General Purpose I/O CH4
22	+3V3	+3V3 logic voltage
23	MOSI	Optional SPI Master Output
24	MISO	Optional SPI Master Input
25	GND	GROUND
26	+2.5V	Bridge Excitation Voltage – 2.5V
27	+2.5V	Bridge Excitation Voltage – 2.5V
28	Bridge1+	Differential Input Channel 1+
29	Bridge1-	Differential Input Channel 1-
30	Bridge2+	Differential Input Channel 2+
31	Bridge2-	Differential Input Channel 2-

Datasheet

Product no: NSE-5003-03

Doc. no: NSE-500303-001

3 Mechanical Dimensions

Consult NSE for 3D step model of chassis.

4 Datasheet Revision History

REV	DATE	DESCRIPTION	PREP	APPR
А	05.09.2017	Initial Revision	RFY	GLK
В	04.06.2018	Updated	RFY	GLK
С	24.02.2021	Updated with new memory sizes	RFY	

5 Ordering

5.1 Order code

		Order code: NSE-5003	-03	-В
Category	NSE-5003	= NSE HT Processor Boards		
Model	-03	= PB300 Processor Board		
Variant	-A	= 2Mbit EEPROM (FRAM) Memory (Standard)		l
	-C	= 64k-bit SPI Serial HT EEPROM (Optional)		
	-D	= 2Mbit FRAM and 64Mbit Flash Memory (Optional)		

5.2 Where to buy

Email:	sales@nse.no
Web:	www.nse.no
Phone:	+47 406 48 400

Doc. no: NSE-500303-001

Rev C – 24.02.2021

North Sea Electronics AS www.nse.no