

Features

- Eurocard size (100x160mm)
- Up to 600Vdc input voltage
- Up to 2A input current
- Up to 200kbps data rates
- USB / RS485 / Eth. Interface
- Very compact design
- Easy integration into 3rd party systems
- High noise redundancy
- Adaptive modulation
- High shock and vibration resistance

Product Description

The NSE Wireline Telemetry System is used for communication via wireline or powerline. The system consists of two main components: topside unit and one or more downhole modems.

The NSE Wireline Telemetry System operates as a transparent link between the topside user interface/applications and the electronics located in the downhole tool. Serial commands sent from a computer to the topside modem are modulated and superimposed on the power cable. This signal is demodulated and converted back to conventional serial commands (TTL or CANBus) in the downhole modem.

The Topside Telemetry – Eurocard Board is designed to be used stand-alone or integrated into a backplane system. All IO can be accessed either by a DIN41612 connector or by the designated board connector.

NSE Wireline Telemetry Systems are deployed worldwide and cover all applications from power tools, such as tractor and strokers, to low power sensor and data acquisition tools. The reliability of the link allows data transfer in very noisy conditions over difficult cables and the system will optimize data rates for the given setup.

The system requires very little user interaction. In most cases, the modems will autotune to the correct gain and frequency settings for a cable. During operation, the system is continuously adapting to the conditions on the line to optimize the signal to noise ratio.

The system is addressable so several downhole modems can communicate with one topside modem and has a broad input voltage range.

1 Table of NSE Topside Modems

Product Number / Name	Size	Max. Input DC Voltage	Max. Wireline Current	Noise immun.	USB / RS485 ports	Ethernet Option
NSE-5004-01 NSE Topside Telemetry 19inch Rack	2U x 330mm (excl. con.)	1200V	8A	High	2/1	NO
NSE-5004-20 NSE Topside Telemetry – Portable Unit	314 x 113 x 71.5mm	600V	2A	Medium	3/0	YES
NSE-5004-21 NSE Topside Telemetry – Eurocard Board	100x 160mm Eurocard	600V	2A	Medium	3/1	YES

2 Product Specification

2.1 Electrical Specifications

Parameter Conditions / Comments		Min	Тур	Max	Unit
SUPPLY VOLTAGE					
Input Voltage	Operational	9	24	36	Vdc
Input Power				30	W
WIRELINE / POWER INTERFACE					
Input High Voltage	Continuous			600	Vdc
Current	Continuous			2	Adc
COMMUNICATION INTERFACES					
USB Port 1	Virtual Serial Port – Communication	9.600		375.000	bps
USB Port 2	Virtual Serial Port – Not assigned	-		-	
USB Port 3	Virtual Serial Port – Status	9.600		375.000	bps
RS-422/485	Alternative communication port	9.600		375.000	bps
Ethernet*	Alternative communication port *Not implemented – Consult NSE for information	-		-	
INTEGRATED SENSORS					
Temperature sensor	Measurement range	-20		85	degC
ENVIRONMENTAL Operating temp. range	Min and Max temperature of the	-10		50	degC
	ambient atmosphere				

TRANSMISSION PARAMETERS				
Uplink frequency range	Centre frequency	20	45	kHz
Uplink data rate	Payload data available to user		200	kbit/se
Downlink freq. range	Centre frequency	24	30	kHz
Downlink data rate	Payload data available to user		16	kbit/se
Adaptive Filter Tuning	Continuous - to optimize SNR	Y	ES	
Adaptive Modulation	Uplink – to optimize data rates	Y	ES	
Automatic gain control	Uplink and downlink	YI	ES	
Data redundancy check	8 bit	YI	ES	
Automatic retransmit	Modems will retransmit if CRC fails	YI	ES	
CONNECTORS				
Backplane	Harting - 96 pin	DIN4	1612	
Board Power	Molex	10530	9-1302	
Wireline/PSU	Harwin	M80-5000000M	1-04-331-00-000	
Ethernet	Wuerth	RJ-	-45	
3xUSB	Harwin	G125-MV	10605L1P	
RS-422	Harwin	G125-FV	10605L0P	
PHYSICAL SIZE				
Length	PCB size excluding 96Pin edge	16	60	mm
Width	connector	10	00	mm
Height		2	.4	mm

2.2 Conformal Coating

This product is delivered with no conformal coating.

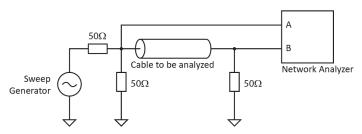
2.3 Environmental requirements

NSE boards must be installed in dry air at atmospheric pressure (1atm). Avoid humid atmosphere or under / overpressure. Refer to general NSE installation guidelines for more information.

2.4 Cable types supported

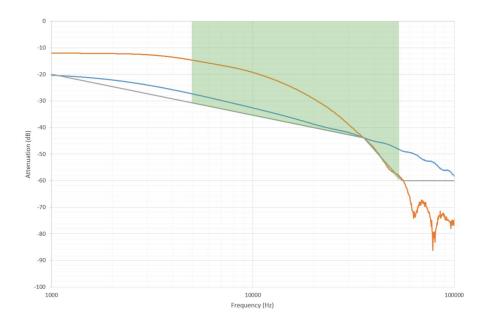
The NSE Telemetry system is developed to work on wireline cables, but has proven to provide reliable links on a variety of cable and setups such as:

- Wireline, Monoconductor cables
- Wireline, Hepta cables
- Coiled tubing with electrical lines
- Coiled tubing with hybrid (electro and fibre) cables
- TEC Downhole Cables
- Various Subsea cables
- Twisted pair


The versatility and adaptive algorithms of the telemetry mean that it will work on a very broad range of cable. Contact NSE if you have questions about specific cable types or setup.

2.5 Telemetry range

The maximum supported cable length of the modem depends on several factors:

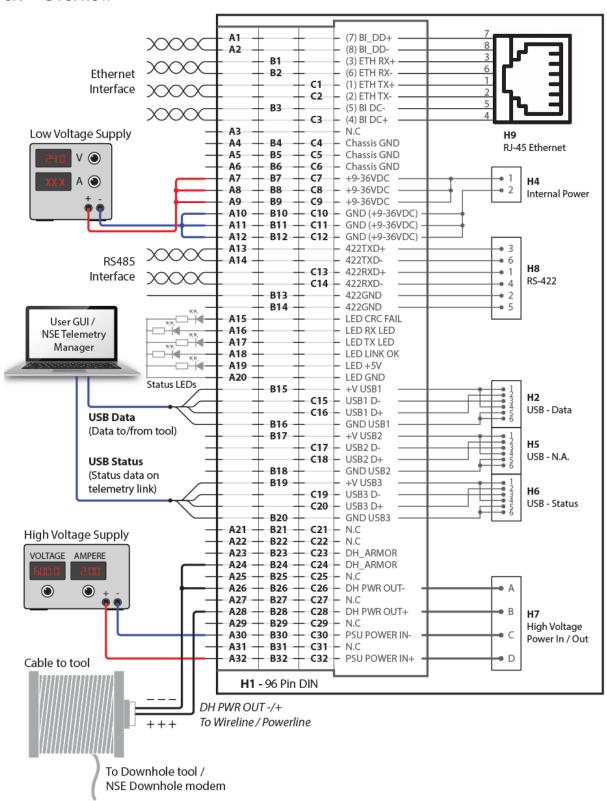

- Cable type and characteristics
- Connections from the topside modem to the cable head/winch
- Connections and grounding in the tool itself
- Ground loops and ground induced noise
- Sources of noise downhole such as motor controller, power converters and sensors
- Sources of noise topside such as power supplies, electrical winches, hydraulic power packs and generators

To provide a reference for the telemetry, we use 2 cable characteristics as the maximum limit for the range of the standard modem setup. Note that in most cases, the telemetry will operate fine on even longer cables than these references, but they serve as a guideline. Long-range modems will support cables setups with higher attenuation.

Measurement circuit for cable references

The graph below shows the attenuation plot of the reference cables with the overlay of a green area ranging between 5 to 55kHz. In this area, the attenuation of the cable should not be below the limit indicated. As can be seen, both the reference cables are within the green area for the frequency range of interest.

Reference Cable 1


Length 9.1km / 30kft Camesa 5/16 1N32WTZ (Corrosion resistant)

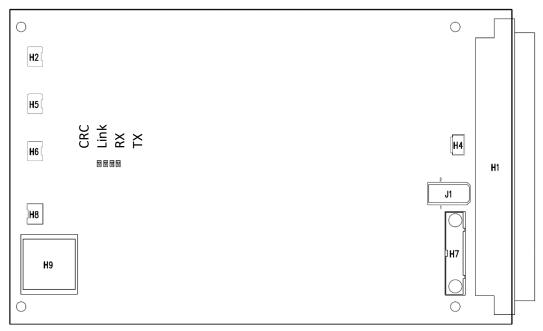
Reference Cable 2

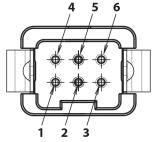
Length 9.1km / 30kft Camesa 5/16 1N32PTZ

3 Connections

3.1 Overview

3.2 Connector Placement overview




Figure 2 - Connector Placement Overview

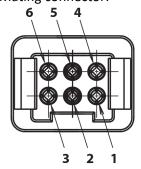
3.3 H2 / H5 / H6 - USB 1 / USB 2 / USB3 Connector

The USB interface chip is FTDI FT232R USB to serial UART interface. The USB interfaces are galvanically isolated.

Port	Connector reference	Function
USB1	H2	Data
USB2	H5	Not Assigned
USB3	Н6	Status

Modem Connector: Harwin G125-MV10605L1P
Mating connector: Harwin G125-FC10605L0-0150L

Illustration/Pin diagram shows the top view of the connector on the PCB (Looking down into the connector).


Pin	Signal	Description
1	+VUSB	+5V
2	D+	Data +
3	D-	Data -
4	+VUSB	+5V
5	GND (USB)	Ground
6	GND (USB)	Ground

3.4 H8 - RS-422 Connector

Port	Connector reference	Function
RS422	Н8	Alternative data port. Has to be selected in
		telemetry manager to work as a data port
		instead of the H2 USB1 data port.

Modem Connector: Mating connector:

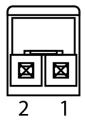
Harwin G125-FV10605L0P Harwin G125-MC10605L0-0150L

Illustration/Pin diagram shows the top view of the connector on the PCB (Looking down into the connector).

Pin	Signal	Description
1	422RXD+	Receive Data +
2	GND (422)	Ground (RS422 reference)
3	422TXD+	Transmit Data +
4	422RXD-	Receive Data -
5	GND (422)	Ground
6	422TXD-	Transmit Data -

3.5 H9 - Ethernet Connector

Port	Connector reference	Function
Ethernet	Н9	Currently, Ethernet is not implemented.
		Consult NSE for more information if required.

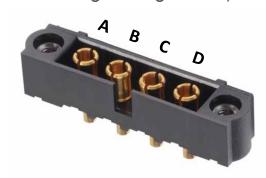

Modem Connector: WUERTH 615008138321 - RJ45 - 10/100 Ethernet

Pin	Signal	Description
1	TX+	Transmit Data +
2	TX-	Transmit Data -
3	RX+	Receive Data +
4	BI DC+	Bi-directional3+
5	BI DC-	Bi-directional3-
6	RX-	Receive Data -
7	BI DD+	Bi-directional4+
8	BI DD-	Bi-directional4-

3.6 H4 - Internal Power Connector information

Port	Connector reference	Function
Internal	H4	Used to power the modem with low voltage
Power		supply voltage (9-36Vdc)

Modem Connector: Molex 105309-1302
Mating connector: Molex 105307-1202



Illustration/Pin diagram shows the top view of the connector on the PCB (Looking down into the connector).

Pin	Signal	Description
1	+9-36V	Board Supply Voltage
2	GND (+9-36V)	Board supply Voltage Return

3.7 H7 - High Voltage DC IN / OUT

Illustration/Pin diagram shows the connector that is mounted on the PCB.

Port	Connector reference	Function
High voltage DC IN/OUT	H7	Interface to the downhole modem (OUT) and to a high voltage DC power supply (IN). Note that from the DH PWR OUT connections should go directly to the downhole modem(s) without anything connected in between except for the cable/wireline.

Modem connector: Harwin M80-5000000M1-04-331-00-000
Mating connector: Harwin M80-263F104-00-00 (connector house)

Pin	Signal	Description		
Α	DH PWR OUT-	Return - High Voltage DC to Downhole tool		
В	DH PWR OUT+	Positive - High Voltage DC to Downohole tool		
С	PSU POWER IN-	Return - High Voltage DC from the power supply		
D	PSU POWER IN+	Positive - High Voltage DC from the power supply		

3.8 H1 - Backplane Connector

Port	Connector reference	Function
DIN96	H1	Backplane connector. All connections.
Backplane		

Modem Connector: Edge Connector 96 pin DIN41612 – Harting 09031967921

Mating Connector: **DIN41612**

Pin assignments:

Pin	Description	Pin	Description	Pin	Description	
A1	BI_DD+(7)	B1	ETH RX+(3)	C1	ETH TX+(1)	
A2	BI_DD-(8)	B2	ETH RX-(6)	C2	ETH TX-(2)	
А3	N.C	В3	BI_DC-(5)	С3	BI_DC+(4)	
A4	Chassis GND	B4	Chassis GND	C4	Chassis GND	
A5	Chassis GND	B5	Chassis GND	C5	Chassis GND	
A6	Chassis GND	В6	Chassis GND	C6	Chassis GND	
A7	+9-36V	B7	+9-36V	C7	+9-36V	
A8	+9-36V	B8	+9-36V	C8	+9-36V	
A9	+9-36V	В9	+9-36V	C9	+9-36V	
A10	GND (+9-36V)	B10	GND (+9-36V)	C10	GND (+9-36V)	
A11	GND (+9-36V)	B11	GND (+9-36V)	C11	GND (+9-36V)	
A12	GND (+9-36V)	B12	GND (+9-36V)	C12	GND (+9-36V)	
A13	422TXD+	B13	422GND	C13	422RXD+	
A14	422TXD-	B14	422GND	C14	422RXD-	
A15	LED CRC FAIL	B15	+VUSB1	C15	USB1 D-	
A16	LED RX LED	B16	GND (USB)	C16	USB1 D+	
A17	LED TX LED	B17	+VUSB2	C17	USB2 D-	
A18	LED LINK OK	B18	GND (USB)	C18	USB2 D+	
A19	LED +5V	B19	+VUSB3	C19	USB3 D-	
A20	LED GND	B20	GND (USB)	C20	USB3 D+	
A21	N.C	B21	N.C	C21	N.C	
A22	N.C	B22	N.C	C22	N.C	
A23	DH_ARMOR	B23	DH_ARMOR	C23	DH_ARMOR	
A24	DH_ARMOR	B24	DH_ARMOR	C24	DH_ARMOR	
A25	N.C	B25	N.C	C25	N.C	
A26	DH PWR OUT-	B26	DH PWR OUT-	C26	DH PWR OUT-	
A27	N.C	B27	N.C	C27	N.C	
A28	DH PWR OUT+	B28	DH PWR OUT+	C28	DH PWR OUT+	
A29	N.C	B29	N.C	C29	N.C	
A30	PSU POWER IN-	B30	PSU POWER IN-	C30	PSU POWER IN-	
A31	N.C	B31	N.C	C31	N.C	
A32	PSU POWER IN+	B32	PSU POWER IN+	C32	PSU POWER IN+	

3.9 LED Indicators

The board has 4 LED indicators to indicate activity.

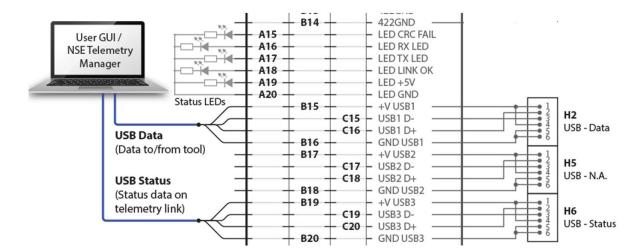
Name	Colour	Description	
Link	Green	Illuminated when topside and downhole modem has power and contact with each other	
RX	Green	Blinks when receiving data	
TX	Green	Blinks when transmitting data	
CRC	Red	Blinks when detecting a CRC Fault	

4 Features

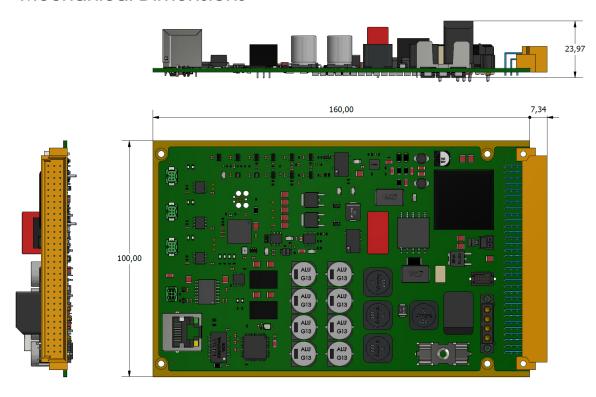
The NSE Telemetry is continuously being updated and updates are provided for free to our customers. Below is a list of the main (but not all) features of the telemetry system. Consult NSE for further questions or inquiries about the features and advantages of the NSE Telemetry system.

Feature	Description				
Transparent data	The data being sent and received on the data port is the same bytes as you				
port	receive and send on the topside modem. No framing or encryption is necessary.				
	The purpose of the modem is to be a transparent datalink from your topside user				
	interface to the tool.				
	Note that topside and a downhole modem can have different baud rates and that				
	the latency on the data can have some variation as the modem will buffer data				
	and send it over the line in packages.				
High Power	The modem has a high power / high voltage wireline filter design to separate the				
Wireline Filter	communication signal from the DC power being fed to the modem.				
	The high power filter will handle the currents (within specifications) and voltages				
	normally being seen on a wireline and will help to improve the signal to noise				
	ratio of the system.				
Automatic Link	The first time the modems are powered up on a new cable, the topside and				
Tuning	downhole modems will analyse the cable and work out the best settings for				
	modulation, gains and frequencies. No user interaction is required here, and this				
	feature ensures optimum data rates and signal quality for a given cable.				
	The feature can be disabled if the user wants to set the parameters themselves.				
Adaptive filter	Once the link has been established the modems will continuously work to adapt				
tuning	to the cable by updating the digital filter coefficients. The updates are being done				
	several times per second and ensure that the link will maintain the highest				
	possible signal to noise ratio even when conditions such as spooling out the				
	cable, temperature and load, changes.				

Adaptive	The adaptive modulation will increase the modulation rate in steps (hence the		
modulation	available data rates) when the signal to noise ratio is better than defined		
	thresholds. In this way, the user will always have the best possible data rate for		
	the actual condition (cable and noise) at the same time as the modem will ensure		
	to lower the data rates if noise levels increase.		
	It is possible to set the modems to a "safe" mode where the system will optimize		
	frequency and modulation for noisy conditions rather than "performance" mode		
	where the modem will optimize for the highest possible data rates.		
CRC and	All data being sent over the wireline are being CRC (Cyclic Redundancy Check)		
automatic	checked when received and if the modems detect a failed CRC it will request that		
retransmissions	the data are being retransmitted (up to 4 times).		
	All CRC events, retransmissions and package loss (if resending a package 4 times		
	fail, the package is dropped) are being tracked and the count of these events can		
	be read out over the status port.		
Addressable	The downhole modems are addressable and several downhole modems can be		
	connected in parallel. On the topside modem, one choose which modem to talk		
	to by selecting a destination address.		
Data buffering	When data is being fed to the modems on the serial port, the data are being		
	buffered until they are transmitted over the wireline. Both the topside modems		
	and the downhole modems have defined buffer space to temporarily store bytes		
	that are not immediately sent.		
	The status of the serial buffers can be monitored through the status port to		
	optimize the data flow into the modems and to prevent overflowing the serial		
	buffers. The flow control mechanism can also be enabled if required.		


4.1 Bootloader

The controller is provided with a bootloader that allows for easy updates of the firmware. NSE is constantly making improvements and adding features to its firmware-base and the bootloader allows the customer to upgrade a controller if desired.


5 Graphical User Interface

The "NSE Telemetry Manager" software (graphical user interface) is free of charge software that can be used to set up and monitor the telemetry system. The software uses the status port to communicate with the modem.

The "NSE Telemetry Manager" will display all relevant data from the telemetry and can trend- and download all parameters. Data from a test can be uploaded directly to NSE servers to ease support and faultfinding.

6 Mechanical Dimensions

7 Datasheet Revision History

REV	DATE	DESCRIPTION	PREP	APPR
А	23.09.2020	New doc# and updated content	RFY	

8 Product code

		Product code:	NSE-5004	-21
Category	NSE-5004	= NSE Telemetry		
Model	-21	= Topside Telemetry – Eurocard B	oard	

8.1 Where to buy

Email: sales@nse.no
Web: www.nse.no
Phone: +47 406 48 400